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LE’ITER TO THE EDITOR 

Maximum entropy data analysis: another derivation of S - x2 
R Lieu 
Astrophysics Group, Blackett Laboratory, Imperial College of Science and Technology, 
London SW7 282. U K  

Received 9 November 1987 

Abstract. An earlier work suggested a statistic S - x 2  as the key to maximum entropy data 
analysis in the simplest experimental situations. The present letter reinforces such a claim 
by offering an alternative proof. Slightly more elaborate inference procedures are also 
treated, together with a critique of currently available techniques. 

A recent paper (Lieu er a1 1987a) addresses the problem of maximum entropy as a 
method of inference in the analysis of data from measurements which are inevitably 
subject to errors. The reasoning yielded a statistic S - x 2 ,  which is a precise expression 
for the entropy. The procedure of maximum S - x 2  generates a unique output distribu- 
tion, and applications to simulated data having a variety of signal-noise combinations 
were carried out. Here we seek a more complete mathematical justification of such 
an undertaking. 

The basic problem concerns the best estimate of a set of probabilities 

, 
{ p i ,  i =  1,2, .  . . , r }  c p , = 1  

i = l  

subject to some prior knowledge 

{Pt,  * U , ,  i =  1,2, .  . . , r }  c P , = 1  
, = I  

where {Pt}  are the experimental data and {at}  their associated random errors (not 
necessarily Gaussian). 

Following Boltzmann, we solve the problem by imagining that the game of prob- 
abilities is repeated N times, where N is large, and working out the most likely 
distribution 

{n i=Np , , i=1 ,2  , . . . ,  r }  ni = N, 
i = l  

According to the central limit theorem, the distribution of an individual variate ni is 
given by 

(n, - ti ,)’  ) 2 Na- 
P(n,) = (27rN)-”’u~‘ exp( - 
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and this is valid even though pt may have random errors which are non-Gaussian. 
Hence, the conditional probability of having a distribution identical to the data, 
{ A,, i = 1,2, . . . , r } ,  given a hypothesis population { n,, i = 1,2,  . . . , r } ,  is the following: 

P(data/hypothesis) = ( 2 ~ N ) - " ~ ( a , a ~ .  . . ar)-' 
2Na: 

What is needed, however, is P(hypothesis/data). This is related to the former by 
P(hypothesis/data) a P(data/hypothesis) x P(hypothesis) where the constant of pro- 
portionality is l /P(data).  Now the probability of a hypothesis distribution is obtainable 
by standard entropy arguments (i.e. enumeration of outcomes) as 

1 N! 
P(hypothesis) = 7 

r n , ! n 2 !  . . .  n r !  

The most likely distribution in the presence of the available information is then 
determined by maximising P = P(hypothesis/data), or 

N! i (ni - f i r ) '  
exp( - P =  

n, ! n 2 ! .  . . n, ! 2 N ~ f  

(note that some constants of propotionality are omitted here). Using Stirling's formula 
of N! in log P, it is quite easy to show that 

sd=s-x2 
where 

s = - 2 pi log p t  
i = l  

and 

( p i  x2= c 
i = ,  2af  

is the correct statistic to maximise. 
Although this result was obtained previously, it is possible to extend the theory a 

little. Thus instead of requiring the entire set of probabilities { p i ,  i = 1,2,  . . . , r } ,  we 
may also find the best estimate of p = pl + p 2  quite simply by not distinguishing between 
the first and second bins. Then 

P(data/hypothesis) = ( 2 ~ N ) - ( ~ - ' ) / ~ ( u ; +  c ~ : ) - ' / ~ ( u ~  . . . a,)-' 

- (ni-fin12 
( n  - A ,  - A 2 )  

2 

x exp( - 
~N(u:+u:) i - 3  2 N ~ f  

and 

1 N! 
P(hypothesis) = ~ 

( r - l ) N  n ! n 3 ! .  . . n,! 
where n = n, + n2 .  The unique solution of { p = pl + p 2 ,  p3 ,  . . . , p r }  is obtained by 
maximising the statistic 

The procedure can be generalised to the sum of any combinations of the p i .  
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The author does not agree with the manner in which problems of a similar nature 
have been tackled in contemporary literature. The Gull-Daniell-Skilling method gives 
the false impression that the quality of image data can be significantly improved at no 
expense. Both the rationale and actual performance of this method have been criticised 
(Lieu er a1 1987a, b). Another recent work proposes the maximum of N S - x ’  (Jaynes 
1984). This is surprising because, N, the number of (imaginary) trial runs, is large 
beyond measure. The error lies in the calculation of P(data/hypothesis). This is 
proportional to e-NX2, not e-x2, because each fictitious trial is equivalent to one 
measurement of the probability distribution. After N measurements, the standard 
deviation must be reduced by J N .  
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